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Supposefis a distribution on Rn, all of whose kth order derivatives are in U(Rn)
and k is large enough to imply thatfis continuous, namely, kp > n. If the values off
on a grid of points (not necessarily regular) are in IP, we show that f is in U(Rn)
and there is an estimate on the LP norm off in terms of the IP norms of these values
and the U norms of its k th order derivatives. In the case that these values are all
zero, this result is useful in obtaining estimates for certain types of multivariate
interpolation schemes. An application to generalized splines is given. © 1985

Academic Press, Inc.

1. INTRODUCTION

Suppose f is a continuously differentiable function on the interval
I = [a, b] such that f(tJ = 0, i = 0, 1,..., m, at the points a = to < t 1 < ... <
tm=b. If h=maxi(ti-ti_d, it is not difficult to obtain an estimate on the
L 2 norm off in terms of the L 2 norm of its derivative f'. Indeed, as is well
known, an application of elementary calculus results in

(1 )

where II f II = {f~ If( tWdt} 1/2 and C 1 is a constant independent of f and h.
Iff is smoother, then under similar conditions (assuming k ~ m)
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where j<k) denotes the kth derivative of f Analogous estimates involving
more general LP norms also hold.

Inequalities such as (1) and (2) are very useful in obtaining error
estimates for various one dimensional interpolation schemes. For example,
if g is a continuously differentiable function on I and s is its piecewise linear
spline interpolant on the points mentioned above, then using the well
known fact that II g' - s'l/ ~ II gill and applying (1) with f = g - s, we have
the error estimate 1/ g-sll ~ C1h II g'l/.

One of the purposes of this paper is to state and prove a multivariate
analogue of (1) and (2) in the LP norm without special assumptions on the
geometry of the set of zeros of f The result follows from a theorem, given
below, concerning a relationship between the pointwise values off on cer­
tain countable subsets of Rn

, the LP norm of J, and the LP norm of its
derivatives. We should also mention that there are many other results
relating the values of linear functionals and Sobolev norms; for example,
see [3, 4, 6] or [10].

Before introducing various technical details we observe that if the num­
ber of variables is n, n~ 2, and the set of zeros off is some discrete lattice
in Rn

, then an estimate such as (1) involving only the first gradient and L2

norms over some open set is not possible. The reason can be easily seen
from the following argument: If such an estimate were to hold for smooth
functions then, since the inequality depends only on the L 2 norm of gradJ,
it should hold for all distributions whose gradient is in L 2. However, if the
number of variables is two or more, such f need not be continuous and
need not make sense pointwise; in particular, the hypothesis concerning the
vanishing of f on a discrete set is meaningless.

It should be clear that appropriate analogues of (2) in the LP norm will
involve a lower bound on the order of differentiation in terms of p and the
number of variables. These bounds should be directly related, of course, to
the number of derivatives in LP that a distribution needs in order to be
equivalent to a continuous function.

As is customary, generic constants which occur in various expressions
below will be denoted by the symbol C with or without subscripts. These
constants usually depend on p and the number of variables and need not
be the same at every occurrence. By keeping track of these constants and
how they arise, one may obtain a rough estimate on them in terms of all
the parameters involved. 1

1 We wish to thank the referee for bringing Refs. [9,10] to our attention and for pointing
out that perhaps the methods in [10] may lead to more accurate estimates of these constants.
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2. MAIN RESULTS

We will always be dealing with complex valued functions and dis­
tributions defined on some open subset Q of Rn and use standard multi­
index notation (see [1, p. 1]). Unsubscripted absolute value notation
denotes either Euclidean length or multi-index length, depending on the
context. The symbol Wk.P(Q), with p satisfying I ~p ~ 00 and k a non­
negative integer, denotes the space of distributions, f, all of whose kth
order derivatives are in U(Q); this space is equipped with the semi-norm
If !k.p,D = LI~I =k liD)' II LP(.Q) where II~II LP(D) = (JD 1~(xW dx)l/P if 1~p < 00

with the usual modification in the case p= 00. Note that Iflo,P,D=
IlfIILP(.Q)· Wk,P(Q) = nJ=o Wj·P and is equipped with the norm Ilfllk,p,D =
LJ=o Iflk,p,D' When the symbol Q does not appear in the subscript it is to
be understood that Q = Rn

; we do this to simplify the notation. Thus, for
example, IlflILP= IlfIILP(R") and Iflk,p= Iflk,p,R"'

Recall that if f is in Wk,P(Q) then D)' is locally in U for all oc which
satisfy 0 ~ loci ~ k; more details can be found, for example, in [9]. Further­
more, if kp > n then the equivalence class of measurable functions
corresponding to f contains a continuous function; to avoid confusion,
when discussing such f we will always assume that we are dealing with a
continuous function. The following lemma, which is used in the proof of
Theorem 1, gives another local property of such f

LEMMA 1. Suppose f is in Wk,P(Q), kp> n, and Q is a cube with sides of
length h whose closure is contained in Q. Then

k

IlfIILP(Q)~hn/p If(xo)1 + I Cjh j Iflj.p,Q
j=l

(3 )

where X o is any point contained in Q and the C/s are positive constants
independent off, Q, and Q.

Proof Suppose f is k times continuously differentiable on the closure of
Q and, for any x in Q, write

f(x) =f(xo) + A + B (4)

where A = Ll"; I~I <k C~D~f(x)(x - xo)'x and B = LI~I =k C~ J~ tk- 1

D~f(xo + tOJ) OJ~ dt where OJ = (x - xo)/r and r = Ix - xol. It is easy to see
that

k-l

IIAIILP(Q)~ I Cjh
j

Iflj,p,Q'
j=l

(5)
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To obtain an estimate on the LP(Q) norm of B, consider a typical term,
apply Holder's inequality using the fact that kp > n, and write

If: tk-1Dj'(xo + tw) w~ dtl
P

~ Crkp - n
( IDj'(xo + tw)1 P t n

-
1dt.

Call the term on the left hand side of the above inequality B:. If {(r, w):
o~ r ~ p(w), WE R n with Iw I= 1} describes the closure of Q in terms of
spherical coordinates centered at X o, then integrating both sides of the last
inequality over Q in terms of these coordinates and interchanging orders of
t and r integration results in

f f
P(W)

~ C ID~/(xo + tw)1 P t n -lrkp - 1 dr dt dw
Iwl ~ 1 0

f f
P(W)

~ Chkp IDj(xo + twW t n
-

1dt dw
Iwl ~ 1 0

where dw denotes the usual rotation invariant Lebesgue measure on the
unit sphere. Rewriting the last inequality results in

f B: dx~ Ch
kp

IIDj'llfp(Q)
Q

which, of course, implies that

IIBIIU(Q) ~ Ch
k

I/lk,p,Q' (6)

Estimates (5) and (6) together with formula (4) imply the desired result
for f

The fact that (3) holds for all I in W",P(,Q) follows from a standard
argument using mollifiers. To wit, let ¢J be an infinitely differentiable
function with support in Ixl < 1 such that flxl < 1 ¢J(x) dx = 1. Write I,(x) =
JI(x- y) ¢J(yjt) t- n dy which is well defined for all x in closure of Q if tis
sufficiently small. Furthermore it is easy to check that I, is k times con­
tinuously differentiable in the closure of Q, limt--+0 I,(xo) = I(xo), and
lim, ~o Dj'1 = Dj'in LP(Q) for 0 ~ lal ~ k. The last remark implies that (3)
holds for I, if t is sufficiently small and thus, in the limit, (3) also holds for
f Thus the proof of the lemma is complete.

THEOREM 1. Suppose I is in wk,p(Rn) and kp > n. Let Z be any subset 01

640/43/2-3
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Rn such that h = max{distance(x, Z): x ERn} is finite. If LZEZ If(zW is
finite then f is in U(Rn) and

(7)

where C is a constant independent off, h, and Z.

Proof Using the change of variables x --+ hx and the homogeneity of
the various semi-norms with respect to this change, one sees that it suffices
to prove the theorem for the case h = 1. Assuming h = 1, partition R n into
congruent disjoint cubes with sides of length three and call this partition P.
Since each cube in P properly contains a ball of radius one, it follows that
each such cube, Q, contains at least one point of Z, call it zQ' Applying the
lemma to f, Q, and zQ' raising the right hand side of (3) to the pth power
while treating the left accordingly, and summing over all cubes in the par­
tition results in, after taking the pth root,

( )
l~

IlfIILP~C L If(zQW +A
QEP

(8)

where A=CL~~llflj,p. Now recall (for example, see [1]) that for any
positive E

Iflj,p ~ C{ E ~j Iflo,p + E
k- j Iflk,p}

for j = 1,..., k - 1 and use this to estimate If Ij,p in A to get

where C j (E)=C(1-E1- k )/(E-1). Substitute the last estimate for A into
(8), choose Esufficiently large so that C1(E) is no greater than one-half, and
subtract Cj(E) IlfllLP from both sides of the resulting inequality. Finally,
dividing both sides of this expression by 1- C1(E) results in (7) with Z
replaced by Zp= {zQ: QEP}. However, Zpis a subset of Z so the desired
result easily follows from this.

We now list two immediate corollaries, the first one of which is the result
discussed in the Introduction.

COROLLARY 1. Suppose f is in Wk,P(Rn) and kp>n. Let Z= {xERn:
f( x) = O} and suppose that h = max{distance(x, Z): x E R n} is finite. Then
Docf is in U(Rn) for all rx such that 0 ~ Irxl ~ k and

Iflj.p~Chk-j Iflk,p

for j = 0, 1,..., k where C is a constant independent off, h, and Z.
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COROLLARY 2. Suppose f satisfies the hypothesis of Corollary 1. Then f
is in Wk,P(R n

) and

where CI and C2 are positive constants independent off, h, and Z.

3. ApPLICATION

Recall that the space H~(Q), where Q is an open subset of Rn
, is the

closure in the Wk
•
2(Q) norm of the class of infinitely differentiable functions

with compact support in Q. Let B(u, v), which is defined by

where the e's are measurable functions and the sum is taken over 0 ~ lal,
IPI ~k, be a Hermitian bilinear form on H~(Q) so that (B(u, u))'/2defines a
semi-norm equivalent to lulk.2.0' Consider the following interpolation
problem: .

Given a finite subset G = {XI"'" x m } of Q and numbers
d" ...,dm , find u in H~(Q) such that B(u,u)=min{B(v,v):
vEH~(Q) and such that v(xJ=di, xiEG, i=l, ...,m}. (9)

In the case n=l, Q=[a,b], and B(u,v)=J~D2uD2vdt, the solution of
(9) is the well known cubic spline with zero boundary conditions (see [2]).
Solutions of (9) in the general case, if they exist, may also be regarded as
splines. The general problem has a unique solution under some very mild
conditions on Band Q (see [6]). Related problems have been considered
in [5, 8, 11]; for a survey of various methods of multivariate interpolation
see [6, 12].

Getting back to problem (9), take any g in H~(Q) such that g(x;) =di ,

Xi E G, i = 1,..., m. If u is a solution of (9), we are interested in an estimate of
II u - gil L2(0) in terms of g and G. The estimate below results from an
application of Corollary 1. Such an estimate in the case when G is a rec­
tangular lattice was given in [6]; indeed, the theorem below is a simple
generalization of a portion of [6, Theorem 2.9]. The technique employed
here can be used to obtain estimates for the related problems mentioned
above; we intend to say more about this elsewhere. Concerning estimates
for other methods of interpolation, it appears that they must be studied
case by case.
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THEOREM 2. Suppose 2k > n, u is a solution of (9), and g is any element
in H~(D) such that g(x;)=d;, X;EG, i=I,...,m. If h=max{distance(x,
GvoD): xED} then

Ig - ul j,2,Q ~ Chk- j Igl k,2,Q

for j = 0, ..., k - 1 and C is a constant independent of u, g, h, and G,

Proof Let V be the linear variety of H~(D) consisting of those v's for
which v(x;) = di , X;E G, i= 1,..., n. Since {B(v, v)} 1/2 defines a Hilbert space
norm equivalent to Ilvllk,2,Q on HMD), it follows from the elementary theory
of Hilbert space that if v is in V then v - u is perpendicular to u with
respect to the corresponding inner product, namely, B(v - u, u) = 0. In par­
ticular B(g,g)=B(g-u,g-u)+B(u,u) and thus B(g-u,g-u)~

B(g, g). Since g(x;) - u(x;) = 0, Xi E G, i = 1,..., m, extending g - u to be zero
outside of D, applying Corollary 1 with f =g - u, and using the fact that
{B(u, U)}1/2 is a norm equivalent to iulk,2 we have, for j=O, 1,.." k-l,

Ig- Ul j,2,Q = Ig - Ul j,2 ~ Clhk- j Ig - Ulk,2 ~ C2hk- j{B(g- u, g - u)} 1/2

~ C2hk- J{ B(g, g)} 1/2 ~ C3 hk- j Iglk,2,Q'

Since this string of inequalities contains the desired result the proof is com­
plete,
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